Skip to content
The RadiCal methodThe RadiCal method
  • Contact Us

Conclusion

11.1. Summary
11.2. Key findings
11.3. Further directions
Contents
  • Introduction
    • 1.1. Motivation
    • 1.2. Research question and objective
    • 1.3. Overview of thesis structure
    • 1.4. Overview of implemented modules
    • 1.5. Scope
  • Main methodological approaches
    • 2.1. Physical optics approach
    • 2.2. Fallback approach – generic models
    • 2.3. Solar incidence operators – interface to other methods
    • 2.4. Validation
    • 2.5. Separation of the optical and thermal domain
    • 2.6. Implementation
    • 2.7. Programming language
  • State-of-the-art analysis
    • 3.1. General model and definitions
    • 3.2. Modern approaches – BSDF and DSHGC
    • 3.3. Limitations of BSDF and DSHGC approaches
    • 3.4. Approaches of international standards
    • 3.5. Limitations of approaches in international standards
  • Light, sun and optics – applied principles, models and methods
    • 4.1. A brief history of light
    • 4.2. Nature of light
    • 4.3. Light-matter interaction overview
    • 4.4. Global radiation
    • 4.5. Solar position algorithm
    • 4.6. Complex-valued index of refraction functions
    • 4.7. Generalized Fresnel coefficients
    • 4.8. Stokes vectors
    • 4.9. Müller matrix operations
    • 4.10. Roughness model and microfacet theory
    • 4.11. Subsurface scattering
    • 4.12. Inversion method to derive complex-valued refractive index functions of transparent materials
    • 4.13. Inversion method for a generic model of diffusely reflecting, opaque surfaces
  • Additionally applied methods
    • 5.1. Monte Carlo method
    • 5.2. Simulated annealing
    • 5.3. A Fibonacci hemisphere
  • Solar Incidence Operators Definition, generation and evaluation
    • 6.1. SIOP – Solar Incidence Operator
    • 6.2. SIOP evaluation and incidence profiles
  • A full spectral polarisation Monte-Carlo Raytracer
    • 7.1. Tracing a ray – overview
    • 7.2. Rays and light particles
    • 7.3. 3D model and geometry modules
    • 7.4. Collision detection
    • 7.5. Periodic planes
    • 7.6. Smooth shading
    • 7.7. Material-Interface class
    • 7.8. Scattering classes (TLightSurfaceInteractionStokes)
    • 7.9. The TLSISroughPol scattering class
    • 7.10. Directional scanning process
    • 7.11. Rendering and backward raytracing
  • Full system empirical validation
    • 8.1. PyroScanner measurement method
    • 8.2. Results
  • Application case
    • 9.1. Target object
    • 9.2. Model and workflow
    • 9.3. Evaluation with temporally highly resolved data
    • 9.4. Evaluation of energetic performance
    • 9.5. Determination of effective performance parameters
  • Discussion
    • 10.1. State-of-the-art methods and novel method
    • 10.2. Physical optics integration
    • 10.3. Required material data and inversion approaches
    • 10.4. Results of validation steps
    • 10.5. Limitations
    • 10.6. Integration into current frameworks
    • 10.7. Discussion with respect to research questions
  • Conclusion
    • 11.1. Summary
    • 11.2. Key findings
    • 11.3. Further directions
  • References
Copyright 2025 © Dr. Daniel Rüdisser
  • Introduction
    • 1.1. Motivation
    • 1.2. Research question and objective
    • 1.3. Overview of thesis structure
    • 1.4. Overview of implemented modules
    • 1.5. Scope
  • Main methodological approaches
    • 2.1. Physical optics approach
    • 2.2. Fallback approach – generic models
    • 2.3. Solar incidence operators – interface to other methods
    • 2.4. Validation
    • 2.5. Separation of the optical and thermal domain
    • 2.6. Implementation
    • 2.7. Programming language
  • State-of-the-art analysis
    • 3.1. General model and definitions
    • 3.2. Modern approaches – BSDF and DSHGC
    • 3.3. Limitations of BSDF and DSHGC approaches
    • 3.4. Approaches of international standards
    • 3.5. Limitations of approaches in international standards
  • Light, sun and optics – applied principles, models and methods
    • 4.1. A brief history of light
    • 4.2. Nature of light
    • 4.3. Light-matter interaction overview
    • 4.4. Global radiation
    • 4.5. Solar position algorithm
    • 4.6. Complex-valued index of refraction functions
    • 4.7. Generalized Fresnel coefficients
    • 4.8. Stokes vectors
    • 4.9. Müller matrix operations
    • 4.10. Roughness model and microfacet theory
    • 4.11. Subsurface scattering
    • 4.12. Inversion method to derive complex-valued refractive index functions of transparent materials
    • 4.13. Inversion method for a generic model of diffusely reflecting, opaque surfaces
  • Additionally applied methods
    • 5.1. Monte Carlo method
    • 5.2. Simulated annealing
    • 5.3. A Fibonacci hemisphere
  • Solar Incidence Operators Definition, generation and evaluation
    • 6.1. SIOP – Solar Incidence Operator
    • 6.2. SIOP evaluation and incidence profiles
  • A full spectral polarisation Monte-Carlo Raytracer
    • 7.1. Tracing a ray – overview
    • 7.2. Rays and light particles
    • 7.3. 3D model and geometry modules
    • 7.4. Collision detection
    • 7.5. Periodic planes
    • 7.6. Smooth shading
    • 7.7. Material-Interface class
    • 7.8. Scattering classes (TLightSurfaceInteractionStokes)
    • 7.9. The TLSISroughPol scattering class
    • 7.10. Directional scanning process
    • 7.11. Rendering and backward raytracing
  • Full system empirical validation
    • 8.1. PyroScanner measurement method
    • 8.2. Results
  • Application case
    • 9.1. Target object
    • 9.2. Model and workflow
    • 9.3. Evaluation with temporally highly resolved data
    • 9.4. Evaluation of energetic performance
    • 9.5. Determination of effective performance parameters
  • Discussion
    • 10.1. State-of-the-art methods and novel method
    • 10.2. Physical optics integration
    • 10.3. Required material data and inversion approaches
    • 10.4. Results of validation steps
    • 10.5. Limitations
    • 10.6. Integration into current frameworks
    • 10.7. Discussion with respect to research questions
  • Conclusion
    • 11.1. Summary
    • 11.2. Key findings
    • 11.3. Further directions
  • References